Tổng Hợp

Cách giải phương trình chứa ẩn ở mẫu nhanh nhất và bài tập ứng dụng

Cách giải phương trình chứa ẩn ở mẫu nhanh nhất và bài tập ứng dụng

Giải phương trình chứa ẩn ở mẫu một cách nhanh chóng, chính xác không phải học sinh nào cũng dễ dàng nắm bắt. Mặc dù đây là phần kiến thức Đại số 8 vô cùng quan trọng. Bài viết hôm nay, quocvansaigon.edu.vn sẽ giới thiệu cùng các bạn cách giải phương trình chứa ẩn ở mẫu nhanh nhất và nhiều bài tập ứng dụng khác. Bạn tìm hiểu nhé !

I. LÝ THUYẾT CẦN GHI NHỚ

1. Phương trình chứa ẩn ở mẫu là gì ?

Phương trình chứa ẩn ở mẫu là phương trình có biểu thức chứa ẩn ở mẫu.

Ví dụ: 

2/y+3=0 là phương trình chứa ẩn ở mẫu (ẩn y)

2-4/x2+2x+7=0 là phương trình chứa ẩn ở mẫu (ẩn x)

Ta thấy, việc tìm điều kiện xác định là rất quan trọng trong việc tìm nghiệm của một phương trình. Sau đây, chúng tôi sẽ hướng dẫn phương pháp tìm điều kiện xác định của một phương trình.

2. Tìm điều kiện xác định của một phương trình

Điều kiện xác định của phương trình là tập hợp các giá trị của ẩn làm cho tất cả các mẫu trong phương trình đều khác 0.

Điều kiện xác định của phương trình viết tắt là ĐKXĐ.

Ví dụ: Tìm điều kiện xác định của các phương trình sau

a) (x – 1)/(x + 2) + 1 = 1/(x – 2).

b) (x – 1)/(1 – 2x) = 1.

Hướng dẫn:

a) Ta thấy x + 2 ≠ 0 khi x ≠ – 2 và x – 2 ≠ 0 khi x ≠ 2.

Do đó ĐKXĐ của phương trình (x – 1)/(x + 2) + 1 = 1/(x – 2) là x ≠ ± 2.

b) Ta thấy 1 – 2x ≠ 0 khi x ≠ 1/2.

Do đó ĐKXĐ của phương trình (x – 1)/(1 – 2x) = 1 là x ≠ 1/2.

II. CÁCH GIẢI PHƯƠNG TRÌNH CHỨA ẨN Ở MẪUi6stVdCJV6VTyQIPUlVup6Ijb4EwvH8EHwN7dajQ

A. Phương pháp:

Bước 1: Tìm điều kiện xác định.

Bước 2: Quy đồng, khử mẫu, rút gọn đưa về dạng phương trình bậc hai.

Bước 3: Giải phương trình bậc hai.

Bước 4: So sánh với điều kiện và kết luận.

B. Các ví dụ điển hình

Ví dụ 1: Giải phương trình cach giai phuong trinh chua an o mau cuc hay

cach giai phuong trinh chua an o mau cuc hay 1

Lời giải

Chọn A

cach giai phuong trinh chua an o mau cuc hay 2

Ví dụ 2: Cho phương trình cach giai phuong trinh chua an o mau cuc hay 3. Chọn khẳng định đúng về nghiệm của phương trình:

cach giai phuong trinh chua an o mau cuc hay 4

Lời giải

Chọn D

cach giai phuong trinh chua an o mau cuc hay 5

Ví dụ 3: Giải phương trình cach giai phuong trinh chua an o mau cuc hay 6

cach giai phuong trinh chua an o mau cuc hay 7

Lời giải

Chọn

cach giai phuong trinh chua an o mau cuc hay 8

III. BÀI TẬP CÁCH GIẢI PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU

Bài 1:

Giải phương trìnhly thuyet bai 5 phuong trinh chua an o mau 02

Hướng dẫn:

+ ĐKXĐ: x ≠ 0; x ≠ – 5.

ly thuyet bai 5 phuong trinh chua an o mau 03

⇒ (2x + 5)(x + 5) – 2x2 = 0

⇔ 2x2 + 10x + 5x + 25 – 2x2 = 0 ⇔ 15x = – 25 ⇔ x = – 5/3.

+ So sánh với ĐKXĐ ta thấy x = – 5/3 thỏa mãn điều kiện.

Vậy phương trình đã cho có tập nghiệm là S = {- 5/3}.

Bài 2: Giải phương trình phuong trinh chua an o mau 2

Hướng dẫn:

ĐKXĐ: x ≠ -3 và x ≠ 2

Phương trình tương đương với (2 – x)(x + 3) – 2(x + 3) = 10(2 – x) – 50

⇔ x2 – 7x – 30 = 0 ⇔ phuong trinh chua an o mau 3

Đối chiếu với điều kiện ta có nghiệm của phương trình là x = 10

Bài 3: Giải các phương trình sau:

bai tap bai 5 phuong trinh chua an o mau 06

Hướng dẫn:

bai tap bai 5 phuong trinh chua an o mau 07

⇔ (x + 1)2 – (x – 1)2 = 16

⇔ (x2 + 2x + 1) – (x2 – 2x + 1) = 16

⇔ 4x = 16 ⇔ x = 4.

Vây phương trình đã cho có nghiệm x = 4.

bai tap bai 5 phuong trinh chua an o mau 08

⇔ 2(x2 + x – 2) = 2x2 + 2

⇔ 2x = 6 ⇔ x = 3.

Vậy phương trình đã cho có nghiệm là x = 3.

bai tap bai 5 phuong trinh chua an o mau 09

⇔ 2(x2 + 10x + 25) – (x2 + 25x) = x2 – 10x + 25

⇔ x2 – 5x + 50 = x2 – 10x + 25

⇔ 5x = – 25 ⇔ x = – 5.

Vậy phương trình đã cho có nghiệm x = – 5.

Bài 4: Giải các phương trình sau:

bai tap bai 5 phuong trinh chua an o mau 10

Hướng dẫn:

a) ĐKXĐ: x ≠ – 1;x ≠ 3.

bai tap bai 5 phuong trinh chua an o mau 11

⇔ – x – 1 – x + 3 = x2 + x – x2 + 2x – 1

⇔ 5x = 3 ⇔ x = 3/5.

Vậy phương trình đã cho có nghiệm là x = 3/5.

b) ĐKXĐ: x ≠ 3, x ≠ 4, x ≠ 5, x ≠ 6.

bai tap bai 5 phuong trinh chua an o mau 12

Vậy phương trình đã cho có nghiệm là x = 0;x = 9/2.

c) ĐKXĐ: x ≠ 1.

bai tap bai 5 phuong trinh chua an o mau 13

⇔ (x2 – 1 )( x3 + 1) – (x2 – 1)(x3 – 1) = 2(x2 + 4x + 4)

⇔ (x5 + x2 – x3 – 1) – (x5 – x2 – x3 + 1) = 2(x2 + 4x + 4)

⇔ 2x2 – 2 = 2x2 + 8x + 8

⇔ 8x = – 10 ⇔ x = – 5/4.

Vậy phương trình đã cho có nghiệm là x = – 5/4.

Bài 5: Giải phương trìnhphuong trinh chua an o mau 8

Hướng dẫn:

ĐKXĐ: x ∉ {-2; -3/2; -1; -1/2}

Phương trình tương đương với

phuong trinh chua an o mau 9

Vậy phương trình có nghiệm là x = (-5 ± √3)/4 và x = -5/2

Bài 6: Giải phương trình phuong trinh chua an o mau 4

Hướng dẫn:

ĐKXĐ: x ≠ -1 và x ≠ 1/2

Phương trình tương đương với

phuong trinh chua an o mau 5

⇔ x = 5 (thỏa mãn điều kiện)

Vậy phương trình có nghiệm là x = 5

Bài 7: Giải phương trình phuong trinh chua an o mau 6

Hướng dẫn:

ĐKXĐ: x≠±2 và x≠-1

Phương trình tương đương với

(x+1)2(x-2) + (x-1)(x+1)(x+2) = (2x+1)(x-2)(x+2)

⇔ (x2 + 2x + 1)(x – 2) + (x2 – 1)(x + 2) = (2x + 1)(x2 – 4)

⇔ x3 – 2x2 + 2x2 – 4x + x – 2 + x3 + 2x2 – x – 2 = 2x3 – 8x + x2 – 4

⇔ x2 + 4x = 0 ⇔phuong trinh chua an o mau 7(thỏa mãn điều kiện)

Vậy phương trình có nghiệm là x = -4 và x = 0

Bài 8: Giải phương trìnhphuong trinh chua an o mau 1

Hướng dẫn:

ĐKXĐ: x ≠ -2/3 và x ≠ 2

Phương trình tương đương với (2x+1)(x-2) = (x+1)(3x+2)

⇔ 2x2 – 4x + x – 2 = 3x2 + 2x + 3x + 2

⇔ x2 + 8x + 4 = 0 ⇔ x = -4 ± 2√3 (thỏa mãn điều kiện)

Vậy phương trình có nghiệm là x = -4 ± 2√3

Trên đây, quocvansaigon.edu.vn.vn đã giới thiệu đến quý thầy cố và các bạn học sinh chuyên đề phương trình chứa ẩn ở mẫu và cách giải phương trình chứa ẩn ở mẫu nhanh nhất cùng nhiều bài tập vận dụng khác. Hi vọng, bài viết đã mang đến cho bạn những thông tin hữu ích. Xem thêm cách giải phương trình bậc nhất một ẩn tại đường link này bạn nhé !

Bản quyền bài viết thuộc trường quocvansaigon.edu.vn. Mọi hành vi sao chép đều là gian lận!
Nguồn chia sẻ: quocvansaigon.edu.vn ()

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button